In interactive computer games and computer animation, intuitively controlling the motion of an articulated character is considered as a difficult task. One of the reasons is that, typically, an articulated model used in the field has a high degree-of-freedom (DOF) for joints so that it is challenging to devise an easy-to-use interface to control the individual DOF. In this paper, as an alternative to existing techniques for controlling articulated characters, we propose the traditional marionette control [1] as natural interfaces to control the characters, and explain how to implement a virtual marionette based on physically-based modelling and haptic paradigm. Using our virtual marionette system, we can rapidly but easily create sophisticated motions for a high-DOF articulated character. Moreover, our system relies on haptic interfaces to model the behavior of real-world marionette controls and provides to the puppeteer responsive forces as a result of the created motions. This result...
Sujeong Kim, Xinyu Zhang, Young J. Kim