Identifying phase information is biomedically important due to the association of complex haplotype effects, such as compound heterozygosity, with disease. As recent next-generation sequencing (NGS) technologies provide more read sequences, the use of diverse sequencing datasets for haplotype phasing is now possible, allowing haplotype reconstruction of a single sequenced individual using NGS data. Previous haplotype reconstruction studies have ignored differential allele-specific expression in whole transcriptome sequencing (RNA-seq) data; however, intuition suggests that the asymmetry in this data (i.e. maternal and paternal haplotypes of a gene are differentially expressed) can be exploited to improve phasing power. In this paper, we describe a novel integrative maximum-likelihood estimation framework, HapTree-X, for efficient, scalable haplotype assembly of an individual genome using transcriptomic and genomic NGS read datasets, which makes use of differential allele-specifi...