Accurately recognizing users’ affective states could contribute to more productive and enjoyable interactions, particularly for task-oriented learning environments. In addition to using physiological data, affect recognition models can leverage knowledge of task structure and user goals to effectively reason about users’ affective states. In this paper we present an inductive approach to recognizing users’ affective states based on appraisal theory, a motivational-affect account of cognition in which individuals’ emotions are generated in response to their assessment of how their actions and events in the environment relate to their goals. Rather than manually creating the models, the models are learned from training sessions in which (1) physiological data, (2) information about users’ goals and actions, and (3) environmental information are recorded from traces produced by users performing a range of tasks in a virtual environment. An empirical evaluation with a task-orient...
Sunyoung Lee, Scott W. McQuiggan, James C. Lester