Shading complex materials such as acquired reflectances in multilight environments is computationally expensive. Estimating the shading integral requires multiple samples of the incident illumination. The number of samples required varies across the image, depending on a combination of several factors. Adaptively distributing computational budget across the pixels for shading is a challenging problem. In this paper we depict complex materials such as acquired reflectances, interactively, without any precomputation based on geometry. We first estimate the approximate spatial and angular variation in the local light field arriving at each pixel. This local bandwidth accounts for combinations of a variety of factors: the reflectance of the object projecting to the pixel, the nature of the illumination, the local geometry and the camera position relative to the geometry and lighting. We then exploit this bandwidth information to adaptively sample for reconstruction and integration. F...
Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent