Sciweavers

DKE
2008

Isolated items discarding strategy for discovering high utility itemsets

13 years 11 months ago
Isolated items discarding strategy for discovering high utility itemsets
Traditional methods of association rule mining consider the appearance of an item in a transaction, whether or not it is purchased, as a binary variable. However, customers may purchase more than one of the same item, and the unit cost may vary among items. Utility mining, a generalized form of the share mining model, attempts to overcome this problem. Since the Apriori pruning strategy cannot identify high utility itemsets, developing an efficient algorithm is crucial for utility mining. This study proposes the Isolated Items Discarding Strategy (IIDS), which can be applied to any existing level-wise utility mining method to reduce candidates and to improve performance. The most efficient known models for share mining are ShFSM and DCG, which also work adequately for utility mining as well. By applying IIDS to ShFSM and DCG, the two methods FUM and DCG+ were implemented, respectively. For both synthetic and real datasets, experimental results reveal that the performance of FUM and DC...
Yu-Chiang Li, Jieh-Shan Yeh, Chin-Chen Chang
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2008
Where DKE
Authors Yu-Chiang Li, Jieh-Shan Yeh, Chin-Chen Chang
Comments (0)