Searching for medical information on the Web has become highly popular, but it remains a challenging task because searchers are often uncertain about their exact medical situations and unfamiliar with medical terminology. To address this challenge, we have built an intelligent medical Web search engine called iMed, which uses medical knowledge and an interactive questionnaire to help searchers form queries. This paper focuses on iMed's iterative search advisor, which integrates medical and linguistic knowledge to help searchers improve search results iteratively. Such an iterative process is common for general Web search, and especially crucial for medical Web search, because searchers often miss desired search results due to their limited medical knowledge and the task's inherent difficulty. iMed's iterative search advisor helps the searcher in several ways. First, relevant symptoms and signs are automatically suggested based on the searcher's description of his s...