Sciweavers

AAAI
2007

Learning by Reading: A Prototype System, Performance Baseline and Lessons Learned

14 years 1 months ago
Learning by Reading: A Prototype System, Performance Baseline and Lessons Learned
A traditional goal of Artificial Intelligence research has been a system that can read unrestricted natural language texts on a given topic, build a model of that topic and reason over the model. Natural Language Processing advances in syntax and semantics have made it possible to extract a limited form of meaning from sentences. Knowledge Representation research has shown that it is possible to model and reason over topics in interesting areas of human knowledge. It is useful for these two communities to reunite periodically to see where we stand with respect to the common goal of text understanding. In this paper, we describe a coordinated effort among researchers from the Natural Language and Knowledge Representation and Reasoning communities. We routed the output of existing NL software into existing KR software to extract knowledge from texts for integration with engineered knowledge bases. We tested the system on a suite of roughly 80 small English texts about the form and funct...
Ken Barker, Bhalchandra Agashe, Shaw Yi Chaw, Jame
Added 02 Oct 2010
Updated 02 Oct 2010
Type Conference
Year 2007
Where AAAI
Authors Ken Barker, Bhalchandra Agashe, Shaw Yi Chaw, James Fan, Noah S. Friedland, Michael Glass, Jerry R. Hobbs, Eduard H. Hovy, David J. Israel, Doo Soon Kim, Rutu Mulkar-Mehta, Sourabh Patwardhan, Bruce W. Porter, Dan Tecuci, Peter Z. Yeh
Comments (0)