Background: Elucidating the exact relationship between gene copy number and expression would enable identification of regulatory mechanisms of abnormal gene expression and biological pathways of regulation. Most current approaches either depend on linear correlation or on nonparametric tests of association that are insensitive to the exact shape of the relationship. Based on knowledge of enzyme kinetics and gene regulation, we would expect the functional shape of the relationship to be gene dependent and to be related to the gene regulatory mechanisms involved. Here, we propose a statistical approach to investigate and distinguish between linear and nonlinear dependences between DNA copy number alteration and mRNA expression. Results: We applied the proposed method to DNA copy numbers derived from Illumina 109 K SNP-CGH arrays (using the log R values) and expression data from Agilent 44 K mRNA arrays, focusing on commonly aberrated genomic loci in a collection of 102 breast tumors. Re...
Hiroko K. Solvang, Ole Christian Lingjærde,