Abstract. A level graph is a directed acyclic graph with a level assignment for each node. Such graphs play a prominent role in graph drawing. They express strict dependencies and occur in many areas, e. g., in scheduling problems and program inheritance structures. In this paper we extend level graphs to cyclic level graphs. Such graphs occur as repeating processes in cyclic scheduling, visual data mining, life sciences, and VLSI. We provide a complete study of strongly connected cyclic level graphs. In particular, we present a linear time algorithm for the planarity testing and embedding problem, and we characterize forbidden subgraphs. Our results generalize earlier work on level graphs.