Sciweavers

ICRA
2003
IEEE

Local exploration: online algorithms and a probabilistic framework

14 years 5 months ago
Local exploration: online algorithms and a probabilistic framework
— Mapping an environment with an imaging sensor becomes very challenging if the environment to be mapped is unknown and has to be explored. Exploration involves the planning of views so that the entire environment is covered. The majority of implemented mapping systems use a heuristic planning while theoretical approaches regard only the traveled distance as cost. However, practical range acquisition systems spend a considerable amount of time for acquisition. In this paper, we address the problem of minimizing the cost of looking around a corner, involving the time spent in traveling as well as the time spent for reconstruction. Such a local exploration can be used as a subroutine for global algorithms. We prove competitive ratios for two online algorithms. Then, we provide two representations of local exploration as a Markov Decision Process and apply a known policy iteration algorithm. Simulation results show that for some distributions the probabilistic approach outperforms deter...
Volkan Isler, Sampath Kannan, Kostas Daniilidis
Added 04 Jul 2010
Updated 04 Jul 2010
Type Conference
Year 2003
Where ICRA
Authors Volkan Isler, Sampath Kannan, Kostas Daniilidis
Comments (0)