We consider the problem of autonomous navigation in unstructured outdoor terrains using vision sensors. The goal is for a robot to come into a new environment, map it and move to a given goal at modest speeds (1 m/sec). The biggest challenges are in building good maps and keeping the robot well localized as it advances towards the goal. In this paper, we concentrate on showing how it is possible to build a consistent, globally correct map in real time, using efficient precise stereo algorithms for map making and visual odometry for localization. While we have made advances in both localization and mapping using stereo vision, it is the integration of the techniques that is the biggest contribution of the research. The validity of our approach is tested in blind experiments, where we submit our code to an independent testing group that runs and validates it on an outdoor robot.
Motilal Agrawal, Kurt Konolige, Robert C. Bolles