— We present an efficient method for automatically extracting unified amplitude/phase macromodels of arbitrary oscillators from their SPICE-level circuit descriptions. Such comprehensive oscillator macromodels are necessary for accuracy when speeding up simulation of higherlevel circuits/systems, such as PLLs, in which oscillators are embedded. Standard MOR techniques for linear time invariant (LTI) and varying (LTV) systems are not applicable to oscillators on account of their fundamentally nonlinear phase behavior. By employing a cancellation technique to deflate out the phase component, we restore the validity and efficacy of Krylov-subspace-based LTV MOR techniques for macromodelling oscillator amplitude responses. The nonlinear phase response is re-incorporated into the macromodel after the amplitude components have been reduced. The resulting unified macromodels predict oscillator waveforms, in the presence of any kind of input or interference, at far lower computational c...
Xiaolue Lai, Jaijeet S. Roychowdhury