Abstract. In multi-robot applications, such as foraging or collection tasks, interference, which results from competition for space between spatially extended robots, can significantly affect the performance of the group. We present a mathematical model of foraging in a homogeneous multi-robot system, with the goal of understanding quantitatively the effects of interference. We examine two foraging scenarios: a simplified collection task where the robots only collect objects, and a foraging task, where they find objects and deliver them to some pre-specified "home" location. In the first case we find that the overall group performance improves as the system size grows; however, interference causes this improvement to be sublinear, and as a result, each robot's individual performance decreases as the group size increases. We also examine the full foraging task where robots collect objects and deliver them home. We find an optimal group size that maximizes group performanc...