Abstract. For medical image analysis issues where the domain mappings between images involve large geometrical shape changes, such as the cases of nonrigid motion recovery and inter-object image registration, the finite element methods exhibit considerable loss of accuracy when the elements in the mesh become extremely skewed or compressed. Therefore, algorithmically difficult and computationally expensive remeshing procedures must be performed in order to alleviate the problem. We present a general representation and computation framework which is purely based on the sampling nodal points and does not require the construction of mesh structure of the analysis domain. This meshfree strategy can more naturally handle very large object deformation and domain discontinuity problems. Because of its intrinsic h-p adaptivity, the meshfree framework can achieve desired numerical accuracy through adaptive node and polynomial shape function refinement with minimum extra computational expense. W...