Power consumption and DRAM latencies are serious concerns in modern chip-multiprocessor (CMP or multi-core) based compute systems. The management of the DRAM row buffer can significantly impact both power consumption and latency. Modern DRAM systems read data from cell arrays and populate a row buffer as large as 8 KB on a memory request. But only a small fraction of these bits are ever returned back to the CPU. This ends up wasting energy and time to read (and subsequently write back) bits which are used rarely. Traditionally, an open-page policy has been used for uni-processor systems and it has worked well because of spatial and temporal locality in the access stream. In future multi-core processors, the possibly independent access streams of each core are interleaved, thus destroying the available locality and significantly under-utilizing the contents of the row buffer. In this work, we attempt to improve row-buffer utilization for future multi-core systems. The schemes presented...