The pharmaceutical industry is facing an ever-increasing demand to discover novel drugs that are more effective and safer than existing ones. The industry faces huge problem in improving its drug discovery and development processes since formerly used methods have shown their limits. Additionally, tests for safety of drugs are performed at the later end of the drug discovery pipeline instead of earlier. Therefore, the industry is looking for predictive tools that would be useful in testing the behaviour of a drug candidate earlier on in the pipeline before performing the large scale clinical tests. This paper explores the application of evolutionary multi-objective optimisation techniques for achieving such predictive work in protein-ligand docking. The paper reviews the literature of multi-objective optimisation and the drug discovery process and proposes a framework as a predictive tool to calculate good docking configuration for a given target protein and its binding compound. Fina...
A. Oduguwa, A. Tiwari, S. Fiorentino, R. Roy