Sciweavers

IPMI
2009
Springer

Multimodal Functional Imaging Using fMRI-Informed Regional EEG/MEG Source Estimation

15 years 1 months ago
Multimodal Functional Imaging Using fMRI-Informed Regional EEG/MEG Source Estimation
Abstract. We propose a novel method, fMRI-Informed Regional Estimation (FIRE), which utilizes information from fMRI in E/MEG source reconstruction. FIRE takes advantage of the spatial alignment between the neural and the vascular activities, while allowing for substantial differences in their dynamics. Furthermore, with the regional approach, FIRE can be efficiently applied to a dense grid of sources. Inspection of our optimization procedure reveals that FIRE is related to the reweighted minimum-norm algorithms, the difference being that the weights in the proposed approach are computed from both the current estimates and fMRI data. Analysis of both simulated and human fMRIMEG data shows that FIRE reduces the ambiguities in source localization present in the minimum-norm estimates. Comparisons with several joint fMRI-E/MEG algorithms demonstrate robustness of FIRE in the presence of sources silent to either fMRI or E/MEG measurements.
Aapo Nummenmaa, Matti Hämäläinen, P
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2009
Where IPMI
Authors Aapo Nummenmaa, Matti Hämäläinen, Polina Golland, Wanmei Ou
Comments (0)