Effective Web content filtering is a necessity in educational and workplace environments, but current approaches are far from perfect. We discuss a model for text-based intelligent Web content filtering, in which shallow linguistic analysis plays a key role. In order to demonstrate how this model can be realized, we have developed a lexical Named Entity Recognition system, and used it to improve the effectiveness of statistical Automated Text Categorization methods. We have performed several experiments that confirm this fact, and encourage the integration of other shallow linguistic processing techniques in intelligent Web content filtering.