Consumer electronics products, such as high-end (digital) TVs, contain complex systems on chip (SOC) that offer high computational performance at low cost. Traditionally, these SOCs are application-specific standard products (ASSPs) with limited programmability. We describe why TV SOCs must become more flexible, and why companion chips together with networks on chips (NOC) are a crucial enabling technology. In particular, networks that span multiple chips will become important in the near future. We demonstrate our ideas by extending a commerciallyavailable SOC for picture improvement in high-end TVs with the Æthereal NOC. Our first unoptimised results indicate that replacing the original interconnect (consisting of dedicated links and multiplexers for bypasses) by programmable NOC increases the SOC area by 4% and its power dissipation by 12%. The new, flexible SOC allows new tasks to be spliced in at any point in the task graph. Both analytical performance verification and syst...