Sciweavers

SIGECOM
2010
ACM

A new understanding of prediction markets via no-regret learning

14 years 5 months ago
A new understanding of prediction markets via no-regret learning
We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and no-regret learning. We first show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from expert advice by equating the set of outcomes on which bets are placed in the market with the set of experts in the learning setting, and equating trades made in the market with losses observed by the learning algorithm. If the loss of the market organizer is bounded, this bound can be used to derive an O( √ T) regret bound for the corresponding learning algorithm. We then show that the class of markets with convex cost functions exactly corresponds to the class of Follow the Regularized Leader learning algorithms, with the choice of a cost function in the market corresponding to the choice of a regularizer in the learning problem. Finally, we show an equivalence between market scoring r...
Yiling Chen, Jennifer Wortman Vaughan
Added 18 Jul 2010
Updated 18 Jul 2010
Type Conference
Year 2010
Where SIGECOM
Authors Yiling Chen, Jennifer Wortman Vaughan
Comments (0)