— In many devices, wireless network interfaces consume upwards of 30% of scarce portable system energy. Extending the system lifetime by minimizing communication power consumption has therefore become a priority. Conventional energy management techniques focus independently on minimizing the fixed energy consumption of the transceiver circuit or on scalable transmission control. Fixed energy consumption is reduced by maximizing the transceiver shutdown interval. In contrast, variable transmission rate, coding and power can be leveraged to minimize energy costs. These two energy management approaches present a tradeoff in minimizing the overall system energy. For example, variable energy costs are minimized by transmitting at a lower modulation rate and transmission power, but this also shortens the sleep duration thereby increasing fixed energy consumption. We present a methodology for energy-efficient resource allocation across the physical layer, communications layer and link layer...