Sciweavers

IROS
2006
IEEE

Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning

14 years 5 months ago
Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning
— This paper describes a panoramic view-based navigation in outdoor environments. We have been developing a two-phase navigation method. In the training phase, the robot acquires image sequences along the desired route and automatically learns the route visually. In the subsequent autonomous navigation phase, the robot moves by localizing itself by comparing input images with the learned route representation. To be robust to changes of weather and seasons, an object-based comparison is adopted. Our previous method applied a support vector machine (SVM) algorithm to object recognition and localization and exhibited a satisfactory performance but was sometimes sensitive to the variation of the robot’s heading. This paper thus extends the method to use panoramic images. By searching the image for the region which matches the model image the most, a new method can considerably improve the localization performance and provide the robot with globally correct directions to move.
Hideo Morita, Michael Hild, Jun Miura, Yoshiaki Sh
Added 12 Jun 2010
Updated 12 Jun 2010
Type Conference
Year 2006
Where IROS
Authors Hideo Morita, Michael Hild, Jun Miura, Yoshiaki Shirai
Comments (0)