Sciweavers

ISSAC
2007
Springer

Parallel computation of the rank of large sparse matrices from algebraic K-theory

14 years 5 months ago
Parallel computation of the rank of large sparse matrices from algebraic K-theory
This paper deals with the computation of the rank and some integer Smith forms of a series of sparse matrices arising in algebraic K-theory. The number of non zero entries in the considered matrices ranges from 8 to 37 millions. The largest rank computation took more than 35 days on 50 processors. We report on the actual algorithms we used to build the matrices, their link to the motivic cohomology and the linear algebra and parallelizations required to perform such huge computations. In particular, these results are part of the first computation of the cohomology of the linear group GL7(Z). Categories and Subject Descriptors G.4 [Mathematical Software]: [Parallel and vector imple
Jean-Guillaume Dumas, Philippe Elbaz-Vincent, Pasc
Added 08 Jun 2010
Updated 08 Jun 2010
Type Conference
Year 2007
Where ISSAC
Authors Jean-Guillaume Dumas, Philippe Elbaz-Vincent, Pascal Giorgi, Anna Urbanska
Comments (0)