This paper presents an overview of pARMS, a package for solving sparse linear systems on parallel platforms. Preconditioners constitute the most important ingredient in the solution of linear systems arising from realistic scientific and engineering applications. The most common parallel preconditioners used for sparse linear systems adapt domain decomposition concepts to the more general framework of “distributed sparse linear systems”. The parallel Algebraic Recursive Multilevel Solver (pARMS ) is a recently developed package which integrates together variants from both Schwarz procedures and Schur complementtype techniques. This paper discusses a few of the main ideas and design issues of the package. A few details on the implementation of pARMS are provided.