In this paper we propose a novel analog design optimization methodology to address two key aspects of top-down system-level design: (1) how to optimally compare and select analog system architectures in the early phases of design; and (2) how to hierarchically propagate performance specifications from system level to circuit level to enable independent circuit block design. Importantly, due to the inaccuracy of early-stage system-level models, and the increasing magnitude of process and environmental variations, the system-level exploration must leave sufficient design margin to ensure a successful late-stage implementation. Therefore, instead of minimizing a design objective function, and thereby converging on a constraint boundary, we apply a novel performance centering optimization. Our proposed methodology centers the analog design in the performance space, and maximizes the distance to all constraint boundaries. We demonstrate that this early-stage design margin, which is measure...
Xin Li, Jian Wang, Lawrence T. Pileggi, Tun-Shih C