Database applications such as online transaction processing (OLTP) and decision support systems (DSS) constitute the largest and fastest-growing segment of the market for multiprocessor servers. However, most current system designs have been optimized to perform well on scientific and engineering workloads. Given the radically different behavior of database workloads (especially OLTP), it is important to re-evaluate key system design decisions in the context of this important class of applications. This paper examines the behavior of database workloads on shared-memory multiprocessors with aggressive out-of-order processors, and considers simple optimizations that can provide further performance improvements. Our study is based on detailed simulations of the Oracle commercial database engine. The results show that the combination of out-of-order execution and multiple instruction issue is indeed effective in improving performance of