Abstract. The Galois Sub-hierarchy (GSH) is a polynomial-size representation of a concept lattice which has been applied to several fields, such as software engineering and linguistics. In this paper, we analyze the performances, in terms of computation time, of three GSH-building algorithms with very different algorithmic strategies: Ares, Ceres and Pluton. We use Java and C++ as implementation languages and Galicia as our development platform. Our results show that implementations in C++ are significantly faster, and that in most cases Pluton is the best algorithm.