Phase noise is a topic of theoretical and practical interest in electronic circuits, as well as in other fields such as optics. Although progress has been made in understanding the phenomenon, there still remain significant gaps, both in its fundamental theory and in numerical techniques for its characterisation. In this paper, we develop a solid foundation for phase noise that is valid for any oscillator, regardless of operating mechanism. We establish novel results about the dynamics of stable nonlinear oscillators in the presence of perturbations, both deterministic and random. We obtain an exact, nonlinear equation for phase error, which we solve without approximations for random perturbations. This leads us to a precise characterisation of timing jitter and spectral dispersion, for computing which we develop efficient numerical methods. We demonstrate our techniques on practical electrical oscillators, and obtain good matches with measurements even at frequencies close to the car...
Alper Demir, Amit Mehrotra, Jaijeet S. Roychowdhur