Background: Post-translational modifications (PTMs) have a key role in regulating cell functions. Consequently, identification of PTM sites has a significant impact on understanding protein function and revealing cellular signal transductions. Especially, phosphorylation is a ubiquitous process with a large portion of proteins undergoing this modification. Experimental methods to identify phosphorylation sites are labor-intensive and of high-cost. With the exponentially growing protein sequence data, development of computational approaches to predict phosphorylation sites is highly desirable. Results: Here, we present a simple and effective method to recognize phosphorylation sites by combining sequence patterns and evolutionary information and by applying a novel noise-reducing algorithm. We suggested that considering long-range region surrounding a phosphorylation site is important for recognizing phosphorylation peptides. Also, from compared results to AutoMotif in 36 different kin...