For complex System-on-chips (SoCs) fabricated in nanometer technologies, the system-level on-chip communication architecture is emerging as a significant source of power consumption. Managing and optimizing this important component of SoC power requires a detailed understanding of the characteristics of its power consumption. Various power estimation and low-power design techniques have been proposed for the global interconnects that form part of SoC communication architectures (e.g., low-swing buses, bus encoding, etc). While effective, they only address a limited part of communication architecture power consumption. A state-of-the-art communication architecture, viewed in its entirety, is quite complex, comprising several components, such as bus interfaces, arbiters, bridges, decoders, and multiplexers, in addition to the global bus lines. Relatively little research has focused on analyzing and comparing the power consumed by different components of the communication architecture. I...