Testing of database applications is of great importance. A significant issue in database application testing consists in the availability of representative data. In this paper we investigate the problem of generating a synthetic database based on a-priori knowledge about a production database. Our approach is to fit general location model using various characteristics (e.g., constraints, statistics, rules) extracted from the production database and then generate the synthetic data using model learnt. The generated data is valid and similar to real data in terms of statistical distribution, hence it can be used for functional and performance testing. As characteristics extracted may contain information which may be used by attacker to derive some confidential information about individuals, we present our disclosure analysis method which applies cell suppression technique for identity disclosure analysis and perturbation for value disclosure.