In this paper we introduce quantum interactive proof systems, which are interactive proof systems in which the prover and verifier may perform quantum computations and exchange quantum messages. It is proved that every language in PSPACE has a quantum interactive proof system that requires a total of only three messages to be sent between the prover and verifier and has exponentially small (one-sided) probability of error. It follows that quantum interactive proof systems are strictly more powerful than classical interactive proof systems in the constant-round case unless the polynomial time hierarchy collapses to the second level.