Abstract— We present a novel framework that applies a metalearning approach to clustering algorithms. Given a dataset, our meta-learning approach provides a ranking for the candidate algorithms that could be used with that dataset. This ranking could, among other things, support non-expert users in the algorithm selection task. In order to evaluate the framework proposed, we implement a prototype that employs regression support vector machines as the meta-learner. Our case study is developed in the context of cancer gene expression microarray datasets.