Sciweavers

ISAAC
2003
Springer

Rapid Mixing of Several Markov Chains for a Hard-Core Model

14 years 4 months ago
Rapid Mixing of Several Markov Chains for a Hard-Core Model
The mixing properties of several Markov chains to sample from configurations of a hard-core model have been examined. The model is familiar in the statistical physics of the liquid state and consists of a set of n nonoverlapping particle balls of radius r∗ in a d-dimensional hypercube. Starting from an initial configuration, standard Markov chain monte carlo methods may be employed to generate a configuration according to a probability distribution of interest by choosing a trial state and accepting or rejecting the trial state as the next configuration of the Markov chain according to the Metropolis filter. Procedures to generate a trial state include moving a single particle globally within the hypercube, moving a single particle locally, and moving multiple particles at once. We prove that (i) in a d-dimensional system a single-particle globalmove Markov chain is rapidly mixing as long as the density is sufficiently low, (ii) in a one-dimensional system a single-particle loca...
Ravi Kannan, Michael W. Mahoney, Ravi Montenegro
Added 07 Jul 2010
Updated 07 Jul 2010
Type Conference
Year 2003
Where ISAAC
Authors Ravi Kannan, Michael W. Mahoney, Ravi Montenegro
Comments (0)