Sciweavers

ICRA
2010
IEEE

Real-time identification and localization of body parts from depth images

13 years 9 months ago
Real-time identification and localization of body parts from depth images
Abstract-- We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified as, e.g., hand, foot or head using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space. Experiments involving ground truth labels acquired via an active motion capture system show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-ofthe-art slidin...
Christian Plagemann, Varun Ganapathi, Daphne Kolle
Added 13 Feb 2011
Updated 13 Feb 2011
Type Journal
Year 2010
Where ICRA
Authors Christian Plagemann, Varun Ganapathi, Daphne Koller, Sebastian Thrun
Comments (0)