Character animation in video games--whether manually keyframed or motion captured--has traditionally relied on codifying skeletons early in a game's development, and creating animations rigidly tied to these fixed skeleton morphologies. This paper introduces a novel system for animating characters whose morphologies are unknown at the time the animation is created. Our authoring tool allows animators to describe motion using familiar posing and key-framing methods. The system records the data in a morphology-independent form, preserving both the animation's structural relationships and its stylistic information. At runtime, the generalized data are applied to specific characters to yield pose goals that are supplied to a robust and efficient inverse kinematics solver. This system allows us to animate characters with highly varying skeleton morphologies that did not exist when the animation was authored, and, indeed, may be radically different than anything the original anima...
Chris Hecker, Bernd Raabe, Ryan W. Enslow, John De