The product of experts learning procedure [1] can discover a set of stochastic binary features that constitute a nonlinear generative model of handwritten images of digits. The quality of generative models learned in this way can be assessed by learning a separate model for each class of digit and then comparing the unnormalized probabilities of test images under the 10 different classspecific models. To improve discriminative performance, a hierarchy of separate models can be learned for each digit class. Each model in the hierarchy learns a layer of binary feature detectors that model the probability distribution of vectors of activity of feature detectors in the layer below. The models in the hierarchy are trained sequentially and each model uses a layer of binary feature detectors to learn a generative model of the patterns of feature activities in the preceding layer. After training, each layer of feature dectectors produces a separate, unnormalized log probabilty score. With thre...
Guy Mayraz, Geoffrey E. Hinton