Reversible logic became a promising alternative to traditional circuits because of its applications e.g. in low-power design and quantum computation. As a result, design of reversible circuits attracted great attention in the last years. The number of circuit lines is thereby a major criterion since it e.g. affects the still limited resource of qubits. Nevertheless, all approaches introduced so far for synthesis of complex reversible circuits need a significant amount of additional circuit lines – sometimes orders of magnitude more than the primary inputs. In this paper, we propose a post-process optimization method that addresses this problem. The general idea is to merge garbage output lines with appropriate constant input lines. To this end, parts of the circuits are re-synthesized. Experimental results show that by applying the proposed approach, the number of circuit lines can be reduced by 17% on average – in the best case by more than 40%. At the same time, the increase i...