Traditional flow volumes construct an explicit geometrical or parametrical representation from the vector field. The geometry is updated interactively and then rendered using an unstructured volume rendering technique. Unless a detailed refinement of the flow volume is specified for the interior, information inside the underlying flow volume is lost in the linear interpolation. These disadvantages can be avoided and/or alleviated using an implicit flow model. An implicit flow is a scalar field constructed such that any point in the field is associated with a termination surface using an advection operator on the flow. We present two techniques, a slice-based three-dimensional texture mapping and an interval volume segmentation coupled with a tetrahedron projection-based renderer, to render implicit stream flows. In the first method, the implicit flow representation is loaded as a 3D texture and manipulated using a dynamic texture operation that allows the flow to be investigated inter...