We present a scalable quantum algorithm to solve binary consensus in a system of n crash-prone quantum processes. The algorithm works in O(polylog n) time sending O(n polylog n) qubits against the adaptive adversary. The time performance of this algorithm is asymptotically better than a lower bound Ω( n/ log n) on time of classical randomized algorithms against adaptive adversaries. Known classical randomized algorithms having each process send O(polylog n) messages work only for oblivious adversaries. Our quantum algorithm has a better time performance than deterministic solutions, which have to work in Ω(t) time for t < n failures.
Bogdan S. Chlebus, Dariusz R. Kowalski, Michal Str