We present a new data structure that facilitates approximate nearest neighbor searches on a dynamic set of points in a metric space that has a bounded doubling dimension. Our data structure has linear size and supports insertions and deletions in O(log n) time, and finds a (1 + )-approximate nearest neighbor in time O(log n) + (1/)O(1) . The search and update times hide multiplicative factors that depend on the doubling dimension; the space does not. These performance times are independent of the aspect ratio (or spread) of the points. Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]:Sorting and searching, computations on discrete structures; E.1 [Data Structures]:Graphs and networks, trees. General Terms: Algorithms.