Abstract In legged systems, springy legs facilitate gaits with subsequent contact and flight phases. Here, we test whether electrical motors can generate leg behaviors suitable for stable hopping. We built a vertically operating sledge actuated by a motor-driven leg. The motor torque simulates either a linear leg spring or a muscle-reflex system. For stable hopping significant energy supply was required after midstance. This was achieved by enhancing leg stiffness or by continuously applying positive force feedback to the simulated muscle. The muscle properties combined with positive force feedback result in spring-like behavior which enables stable hopping with adjustable hopping height.