The key to real-time rendering of large-scale surfaces is to locally adapt surface geometric complexity to changing view parameters. Several schemes have been developed to address this problem of view-dependent level-of-detail control. Among these, the viewdependent progressive mesh (VDPM) framework represents an arbitrary triangle mesh as a hierarchy of geometrically optimized refinement transformations, from which accurate approximating meshes can be efficiently retrieved. In this paper we extend the general VDPM framework to provide temporal coherence through the runtime creation of geomorphs. These geomorphs eliminate "popping" artifacts by smoothly interpolating geometry. Their implementation requires new output-sensitive data structures, which have the added benefit of reducing memory use. We specialize the VDPM framework to the important case of terrain rendering. To handle huge terrain grids, we introduce a blockbased simplification scheme that constructs a progressi...