To ensure low power consumption while maintaining flexibility and performance, future Systems-on-Chip (SoC) will combine several types of processor cores and data memory units of widely different sizes. To interconnect the IPs of these heterogeneous platforms, Networks-on-Chip (NoC) have been proposed as an efficient and scalable alternative to shared buses. NoCs can provide throughput and latency guarantees by establishing virtual circuits between source and destination. State-of-the-art NoCs currently exploit Time-Division Multiplexing (TDM) to share network resources among virtual circuits, but this typically results in high network area and energy overhead with long circuit set-up time. We propose an alternative solution based on Spatial Division Multiplexing (SDM). This paper describes our first design of an SDM-based network, discusses design alternatives for network implementation and shows why SDM should be better adapted to NoCs than TDM for a limited number of circuits. O...