—The paper presents a silicon neuron circuit that mimics the behaviour of known classes of biological neurons. The circuit has been designed in a 0.35µm CMOS technology. The firing patterns of basic cell classes: regular spiking (RS), fast spiking (FS), chattering (CH) and intrinsic bursting (IB) are obtained with a simple adjustment of two biasing voltages. The simulations reveal the potential of the circuit to provide a wide variety of cell behaviours with required accommodation and firing frequency of a given cell type. The neuron consumes only 14 MOSFETs enabling the integration of many neurons in a small silicon area. Hence, the circuit provides a foundation for designing massively parallel analogue neuromorphic networks that closely resemble the circuits of the cortex.
Jayawan H. B. Wijekoon, Piotr Dudek