It has been technically challenging to effectively model and simulate elastic deformation of spline-based, thin-shell objects of complicated topology. This is primarily because traditional FEM are typically defined upon planar domain, therefore incapable of constructing complicated, smooth spline surfaces without patching/trimming. Moreover, at least C1 continuity is required for the convergence of FEM solutions in thin-shell simulation. In this paper, we develop a new paradigm which elegantly integrates the thin-shell FEM simulation with geometric design of arbitrary manifold spline surfaces. In particular, we systematically extend the triangular B-spline FEM from planar domains to manifold domains. The deformation is represented as a linear combination of triangular B-splines over shell surfaces, then the dynamics of thin-shell simulation is computed through the minimization of Kirchhoff-Love energy. The advantages given by our paradigm are: FEM simulation of arbitrary manifold with...