ike abstraction of the yarn model; (c) then, we specify the desired knitting pattern over the stitch mesh’s surface. (d) Following the interactive modeling process, the model goes through offline relaxation, beginning with a mesh-based relaxation that moves the stitch mesh to the subdivision surface of the input model and slides its vertices over this surface based on the topology of the knitting pattern; finally, (e) we generate the yarn curves and (f) use a physically based relaxation process at the yarn level to compute the final realistic shape. Recent yarn-based simulation techniques permit realistic and efficient dynamic simulation of knitted clothing, but producing the required yarn-level models remains a challenge. The lack of practical modeling techniques significantly limits the diversity and complexity of knitted garments that can be simulated. We propose a new modeling technique that builds yarn-level models of complex knitted garments for virtual characters. We sta...
Cem Yuksel, Jonathan M. Kaldor, Doug L. James, Ste