Sciweavers

RSA
2002

Testing subgraphs in large graphs

13 years 11 months ago
Testing subgraphs in large graphs
Let H be a fixed graph with h vertices, let G be a graph on n vertices and suppose that at least n2 edges have to be deleted from it to make it H-free. It is known that in this case G contains at least f( , H)nh copies of H. We show that the largest possible function f( , H) is polynomial in if and only if H is bipartite. This implies that there is a one-sided error property tester for checking H-freeness, whose query complexity is polynomial in 1/ , if and only if H is bipartite.
Noga Alon
Added 23 Dec 2010
Updated 23 Dec 2010
Type Journal
Year 2002
Where RSA
Authors Noga Alon
Comments (0)