Abstract—The application of neural networks (NN’s) to automatic analysis of chromosome images is investigated in this paper. All aspects of the analysis, namely segmentation, feature description, selection and extraction, and classification, are studied. As part of the segmentation process, the separation of clusters of partially occluded chromosomes, which is the critical stage that state-of-the-art chromosome analyzers usually fail to accomplish, is performed. First, a moment representation of the image pixels is clustered to create a binary image without a need for threshold selection. Based on the binary image, lines connecting cut points imply possible separations. These hypotheses are verified by a multilayer perceptron (MLP) NN that classifies the two segments created by each separating line. Use of a classification-driven segmentation process gives very promising results without a need for shape modeling or an excessive use of heuristics. In addition, an NN implementati...