We introduce a methodology for automating the maintenance of domain-specific taxonomies based on natural language text understanding. A given ontology is incrementally updated as new concepts are acquired from real-world texts. The acquisition process is centered around the linguistic and conceptual "quality" of various forms of evidence underlying the generation and refinement of concept hypotheses. On the basis of the quality of evidence, concept hypotheses are ranked according to credibility and the most credible ones are selected for assimilation into the domain knowledge base.